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Abstract. We present a non-hierarchal clustering algorithm that can
determine the optimal number of clusters by using iterations of k-means
and a stopping rule based on BIC. The procedure requires twice the
computation of k-means. However, with no prior information about the
number of clusters, our method is able to get the optimal clusters based
on information theory instead of on a heuristic method.

1 Introduction

One of the typical methods for non-hierarchal clustering — k-means — is often
used for huge data clustering as well as self-organizing map [8,9], because it
requires only O(kN) computation for a given number of clusters k£ and sample
size N. In the context of recent research in data mining, several high-performance
techniques for k-means have been developed [1, 6].

The different methods for k-means calculations vary in several aspects. In all
cases, the problem remains that k-means might not converge to a global opti-
mum, depending on the selection of initial seeds. Nevertheless, from data mining
and knowledge discoverly perspective, we are convinced that a pre-determinance
of the number of clusters is a strict restriction.

Indeed, we can obtain an optimal number of clusters heuristically by perform-
ing computations based on different initial settings of cluster numbers. Hardy [2]
surveyed seven typical evaluation criteria (two of them can be applied for hierar-
chal clustering methods) with various datasets. However, varying the number of
clusters requires much computation, because we have to use k-means repeatedly.

We propose an algorithm that initially divides data into clusters whose num-
ber is sufficiently small, and continues to divide the each cluster into two clusters.
We use BIC (Bayesian Information Criterion[7]) as the division criterion. We will
show that the division method works well, and present an implementation. The
idea was proposed also by [5], but our method differs in the following aspects:

1. Our method can be applied for general or p-dimensional datasets.

2. We consider the magnitude of variance and covariance around the centers of
clusters which can be divided progressively.

3. We evaluate the number of clusters by means of computer simulation runs.

Previous research [5] can treat only two-dimensional datasets, and assumes
the variance around the cluster centers to be a constant. As a consequence of



progressive division, the number of elements which is contained in each cluster
becomes fewer, and the variance will become smaller. Therefore, magnitude of
variance should be considered.

In section 2, we describe the principle of k-means and show a proposed algo-
rithm in section 3. In section 4, we evaluate the number of final clusters.

2 K-means method

The procedure of k-means proposed by [4] is as follows:

1. Get the initial k-elements in the dataset, and set them as clusters which

consist of one element.

Allocate the remaining data to the nearest neighborhood cluster centers.

3. Calculate the cluster centers, and regard them as fixed seeds. Repeat once
to allocate the all data to the nearest neighbor cluster seeds.

B

Most k-means procedures, however, require that the data must be allocated
repeatedly until the cluster centers will converge.

3 X-means

Pelleg[5] thought of the basic idea for a 2-division procedure and named it x-

means, indicating that the number of clusters with k-means is indefinite. The

algorithm of x-means is quite simple; we begin to divide data into clusters whose

number is sufficiently small, and continue to divide the cluster into two clusters.
The algorithm proposed in this paper is summarized as follows:

step 0: Prepare p-dimensional data whose sample size is n.
step 1: Set an initial number of clusters to be kg (the default is 2), which should
be sufficiently small.
step 2: Apply k-means to all data with setting k = ko. We name the divided
clusters
Cl,CQ,...,Ck

step 3: Repeat the following procedure from step 4 to step 9 by setting i =
1,2,...,ko.

step 4: For a cluster of C;, apply k-means by setting £k = 2. We name the
divided clusters

0

oM, c?.
step 5: We assume the following p-dimensional normal distribution for the data

x; contained in Cj:
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then calculate the BIC as

BIC = —2log L(@;xi € C;) + qlogn;, (2)



where 0: = [fs, \//'\,] is the maximum likelihood estimate of the p-dimensional
normal distribution; u; is p-dimensional means vector, and V; is p x p di-
mensional variance-covariance matrix; ¢ is the number of the parameters
dimension, and it becomes 2p if we ignore the covariance of V;. x; is the
p-dimensional data contained in C;; n; is the number of elements contained
in C;. L is the likelihood function which indicates L(-) =[] f(-).
We choose to ignore the covariance of V.

step 6: We assume the p-dimensional normal distributions with their parame-
ters 051),052) for Ci(l), Ci(z) respectively; the probability density function of
this 2-division model becomes

906,675 %) = i [f(6"; )" [£ (675017, 3)

where
1, if x is included in C-(l),
%=1\ 0 it xisi o (4)
0, if x is included in C;™;

x; will be included in either C,(l) or 052); a; is a constant which lets equation
(3) be a probability density function (1/2 < a; < 1). If obtaining a exact
value is wanted, we can use p-dimensional numerical integration. But this
requires much computation. Thus, we approximate «a; as follows:

a; =0.5/K(6;), (5)

where [3; is a normalized distance between the two clusters, shown by
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K () stands for an lower probability of normal distribution.

When we set 8; = 0,1,2,3, o; becomes 0.5/0.500 = 1, 0.5/0.841 = 0.59,
0.5/0.977 = 0.51, 0.5/0.998 = 0.50 respectively.

The BIC for this model is

BIC' = —2log L’(GZ;XZ- € C;) + ¢ logn, (7)

where 92 = [951) , 052)] is a maximum likelihood estimate of two p-dimensional
normal distributions; since there are two parameters of mean and variance for
each p variable, the number of parameters dimension becomes ¢’ = 2 x 2p =
4p. L' is the likelihood function which indicates L'(:) =[] g(-).

step 7: If BIC > BIC', we prefer the two-divided model, and decide to continue
the division; we set

C; + WM.

As for Cl@), we push the p-dimensional data, the cluster centers, the log
likelihood and the BIC onto the stack. Return to step 4.



step 8: If BIC < BIC', we prefer not to divide clusters any more, and decide to
stop.
Extract the stacked data which is stored in step 7, and set

CZ' — C@).

Return to step 4. If the stack is empty, go to step 9.

step 9: The 2-division procedure for C; is completed. We renumber the cluster
identification such that it becomes unique in Cj;.

step 10: The 2-division procedure for initial ko divided clusters is completed.
We renumber all clusters identifications such that they become unique.

step 11: Output the cluster identification number to which each element is
allocated, the center of each cluster, the log likelihood of each cluster, and
the number of elements in each cluster. [stop]

The reasons why we choose BIC over other common information criteria for
model selection are follows:

— BIC considers the selection among from exponential family of distributions.
— BIC is based on prior probability rather than the distance between two
distributions.

4 Evaluation of the performance

4.1 An investigation of the number of generated clusters

A simulation procedure is adopted. It generates 250 two-dimensional normal
variables; these random variables should be clustered into 5 groups. Each group
consists of 50 elements:

zj ~N(up=1[0,0], 0 =[0.2,0.2]), (j =1,...,50)

zj ~ N(p=1[-2,0], 0 =10.3,0.3]), (j =51,...,100)
zj ~ N(p=1[2,0], ¢ =[0.3,0.3]), (j =101,...,150)
z; ~ N(p=10,2], o =[0.4,0.4]), (j = 151,...,200)
z; ~ N(p=1[0,-2], o =[0.4,0.4]), (j =201, ...,250)

where p is a mean, and o? is a variance. We set kg = 2 as an initial division, and
performed 1,000 simulation runs of x-means. Two-dimensional normal variables
are generated for each simulation run. X-means will call k-means repeatedly; the
algorithm of k-means is based on [3], which is provided in R.

Table 1 summarizes the number of clusters generated by x-means (upper
row). For 1,000 simulation runs, the most frequent case is when 5 clusters are
generated, this occurs 533 times. The second most frequent case is 6 clusters,
which occurs 317 times. The middle row shows the results applying AIC (Akeike’s
Information Criterion) instead of BIC to x-means. We found that x-means by
AIC tends to overgenerate clusters. The bottom row in Table 1 shows the number
of optimal clusters when the goodness of model for give data is maximum (i.e.,



Table 1. The number of clusters by using 250 random variables of two-dimensional
normal distribution

number of clusters|23 4 5 6 7 8 9 1011 12 13 14|total
X-means (BIC) 26 9 469383 99 275 0 0 0 0O 0]1,000
x-means (AIC) |21 1 322295162 93 54 36 1711 2 41,000
heuristic method [0 2 37 559 265 90 35 8 4 0 0 0 01,000

the AIC for given data is minimum) by varying k applied to k-means. This
distribution is very similar to the distribution in upper row.

The cluster centers found by k-means are not always located where the el-
ements cohere; thus x-means often divides a cluster into two clusters until new
clusters centers will converge where the elements cohere. Consequently, x-means
produces rather more clusters than adequate. Actually in our simulation, when
x-means divides all 250 (= 50 x 50)data into two clusters equally (i.e, 125 ele-
ments each), both subclusters are often divided into three clusters (50+ 50+ 25),
resulting in 6 clusters.

4.2 An investigation of the number of cluster elements

After applying x-means to the simulation runs, we can obtain the distributions
of the number of cluster elements, as shown in Fig.1. The horizontal axis gives
the cluster identification number, which is sorted in increasing order by the
number of cluster elements; the vertical axis gives the distribution of number of
the cluster elements; box-and-whisker charts are used.

A box-and-whisker chart contains a box surrounding two hinges, two whiskers,
and outlier(s) if any; a lower or upper hinge shows 25 or 75 percentile of the dis-
tribution; the median(50 percentile) is in between two hinges. The two whiskers
stands for tails of the distribution; the whiskers extend to the most extreme
data point which is no more than 1.5 times interquartile range from the box; the
outlier(s) may be shown if any.

In case (a), i.e, when obtaining 5 clusters, we found that each cluster consists
of about 50 elements. In case (b) obtaining 6 clusters, 4 clusters consist of about
50 elements and the remainder is divided into 2 clusters. Case (c), obtaining
7 clusters, is similar to (b); 3 clusters consist of about 50 elements and the
remainder is divided into 4 clusters. For cases (b), (¢), and (d), the proper
division in clusters of 50 was performed, although the generated cluster may be
rather small.

4.3 Consideration of the computational amount

X-means requires to find k£ final clusters, even if it repeats to divide into two
clusters. In addition, we need to judge if these k final clusters should not be di-
vided any more. Thus, remembering that k-means requires O(kN) computation,
x-means will take twice as much computation compared to k-means.
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Fig. 1. Distribution of the number of cluster elements contained in final clusters

Indeed the computation of BIC is needed, but we can ignore this because we

calculate it only once after fixing the cluster elements. The BIC can be easily
obtained from the mean and variance-covariance of a p-dimensional normal dis-
tribution. We are convinced that x-means gives us a quite good solution which
meets with its computational expense, although the solution may not be an opti-
mum. This program can be obtained via http://www.rd.dnc.ac.jp/ tunenori/src/
Xmeans.prog.
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